

MADE4IT Quem Somos

CONECTAR É A NOSSA ESPECIALIDADE

A Made4it nasceu com o conceito enraizado de consultoria de TI para atender todo porte de empresas, sempre com a filosofia de **ir até o fim** na causa do cliente.

Nossos Diferenciais

- Suporte especializado
- Atendimento diferenciado
- Alta experiência no setor
- Principais certificações do mercado

Notícias sobre os ataques

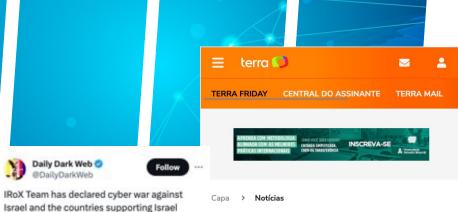
Início > Notícias > Comunicações > Em seis meses, volume de ataques DDOS aumenta cerca de 400% com...

Comunicações Gestão Segurança

Em seis meses, volume de ataques DDOS aumenta cerca de 400% com foco em ISPs

Por Redação - 17 de novembro de 2023

Compartilhe:


Ciberataques afetam milhares de provedores no Brasil, causando interrupção nos serviços de Internet

GRUPO IROX TEAM AMEAÇA ATACAR O BRASIL. SAIBA COMO PROTEGER O SEU NEGÓCIO

Por ISH e SafeLabs: Um grupo de cyber ativistas denominado 'IRoX Team' anunciou uma guerra cibernética contra Israel e os seus apoiadores, divulgando datas para seus ataques cibernéticos. Segundo a publicação

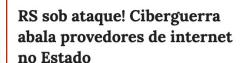
agora

MUNDO

. Date: 20th October 2023

argeted Countries - Brazil, Canada, Poland, Spain

The group shared their target countries


Oct 20: Brazil, Canada, Poland, Spain

#DarkWeb #IsraelPalestineWar

Oct 25: India, United Kingdom, Australia

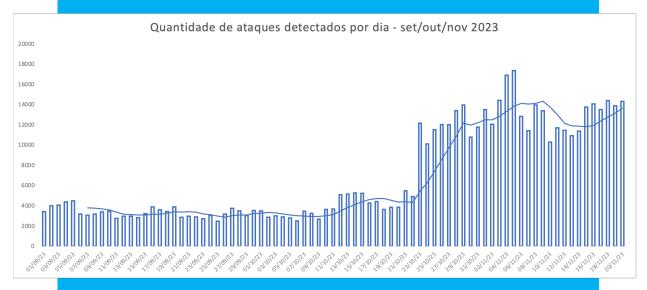
Oct 30: France, Norway, Austria, Germany

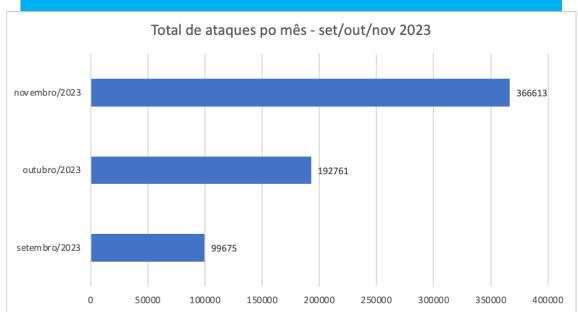
(scheduled ones):

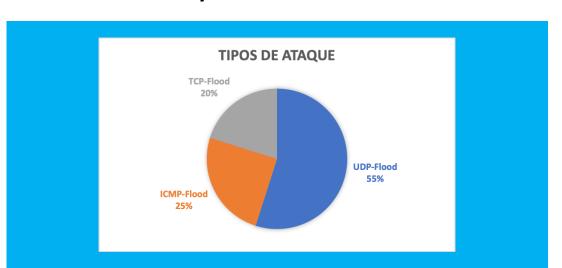
LOTERIAS

PREVISÃO DO TEMI

Milhares de provedores Brasileiros enfrentam ataques DDoS do grupo ciberativista e o Rio Grande do Sul é o mais atingido

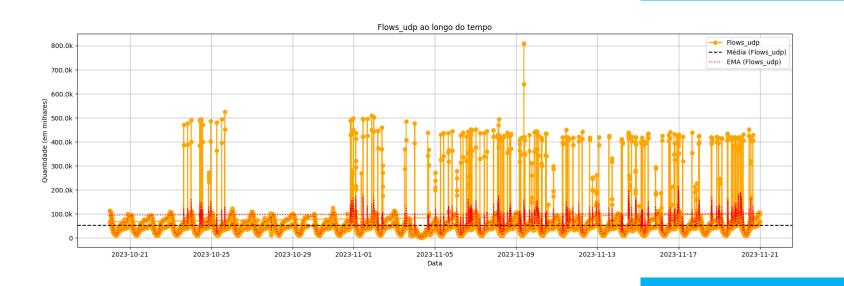

Por: Juliano Haesbaert


24 out 2023 - 14h04



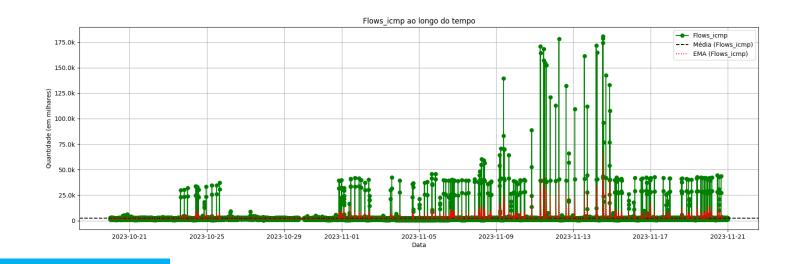
Histórico de Ataques - Sensores

- Aumento de aproximadamente 267% no número de ataques detectados em novembro/23, comparado com setembro/23
- Pico de 17k ataques no dia 05/11/2023
- Quase 367k ataques só em novembro (até 20/11)

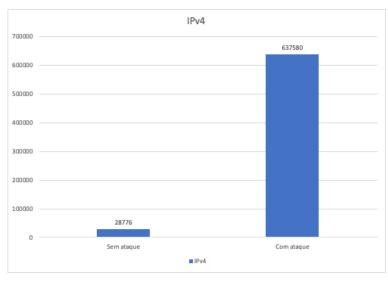

Explorando os Ataques

ALINHAMENTO PRÉVIO

- Os dados foram coletados de uma amostragem a partir dos sensores do Made4Flow;
- O período analisado foi de 20/10/2023 a 20/11/2023;
- Todos os dados são anônimos, e os dados originais analisados tiveram autorização prévia de serem analisados para o fim desta apresentação;
- Esta apresentação não pretende ser uma análise científica dos dados; Estamos explorando os dados de maneira mais qualitativa, buscando embasar as recomendações que logo se seguem.
- Por conta do tempo da apresentação, selecionamos alguns eventos, mas que refletem a grande maioria dos ataques;
- As análises contam com períodos sem ataque e com ataque;
 Para o período "sem ataque", consideramos um timeshift de 10 min anterior ao inicio do ataque.


Explorando Ataque 01

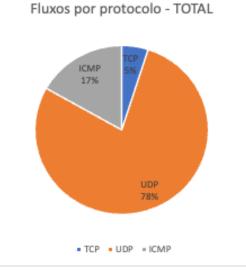
Os fluxos TCP não tiveram uma alteração significativa no período!


- Flows UDPs ao longo do tempo
- Picos de 100k fluxos/s em períodos sem ataque
- Diversas rajadas de até 800k fluxos/s durante os ataques

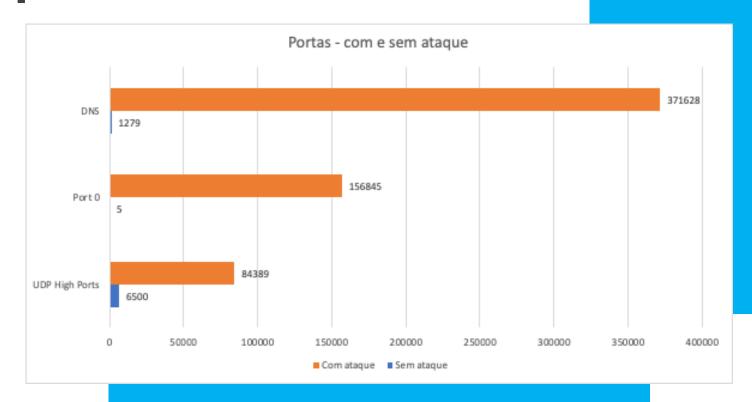
- **Flows ICMP** ao longo do tempo
- Picos de 5k fluxos/s em períodos sem ataque
- Diversas rajadas de até 175k fluxos/s durante os ataques

Ataque 01 - Quais protocolos?

Aumento em 22x o número de fluxos IPv4!!!

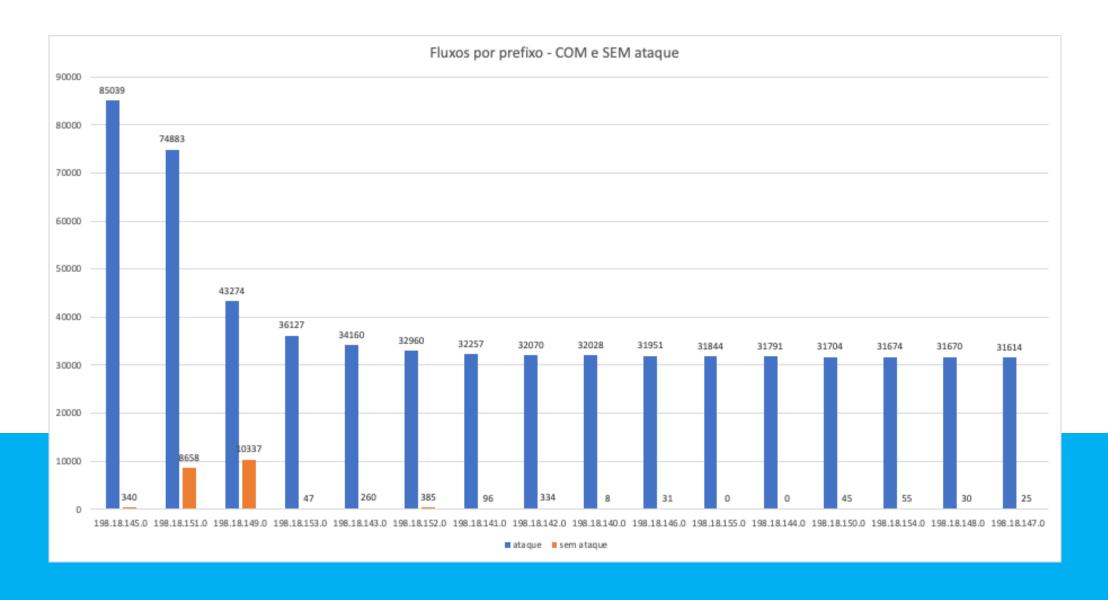


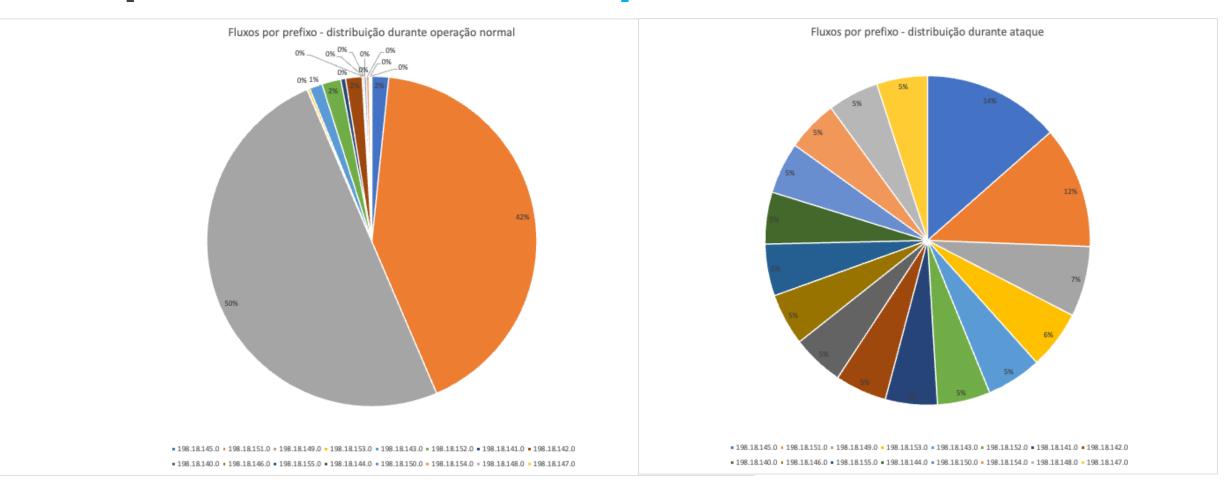
IPv6 uma variação mínima


Resultado: Ataque volumétrico UDP

- 78% UDP
- 17% ICMP
- 5% TCP

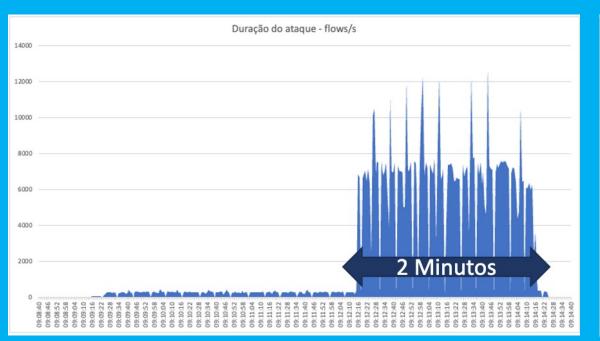
Ok, ICMP também, mas em menor escala.


Ataque 01 - Avaliando o UDP


- Aumento de 290x no número de fluxos DNS
- De 1.2k para 371k
- Flood de porta 0
- De 5 fluxos para 156k
- Flood de portas altas
- De **6.5k** para **637k** (22x)

Resultado: Ataque volumétrico **UDP**, sendo o principal ofensor o tráfego **DNS** e de "porta 0"

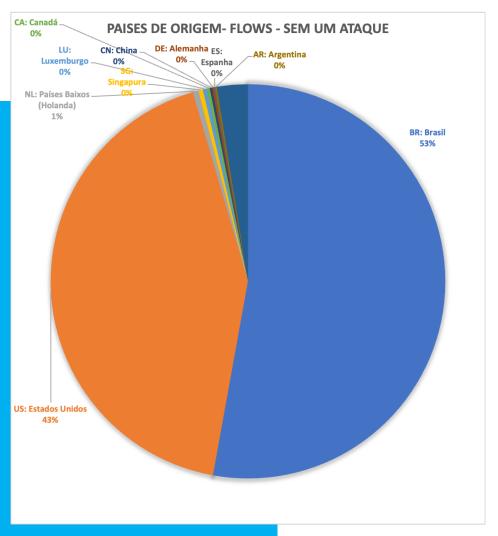
Ataque 01 - Direcionado a quem?



Ataque 01 - Direcionado a quem?

Resultado: Ataque volumétrico UDP, sendo o principal ofensor o tráfego DNS e de "porta 0", destinado a todas as sub-redes do ASN

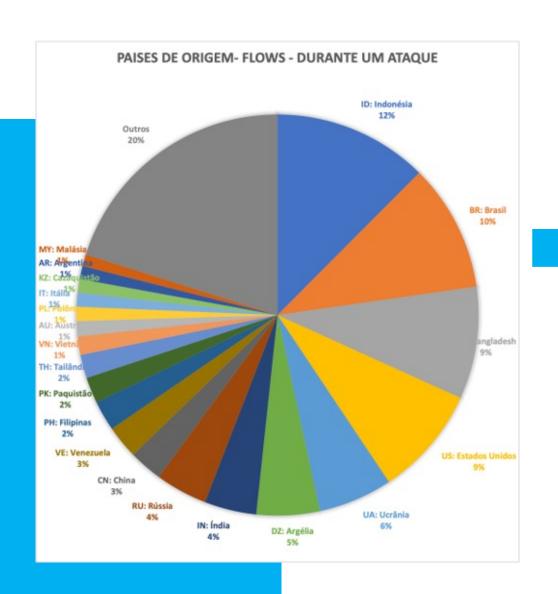
Ataque 01 - Por quanto tempo?

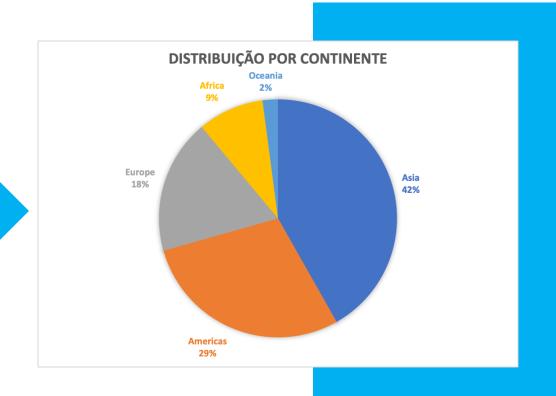


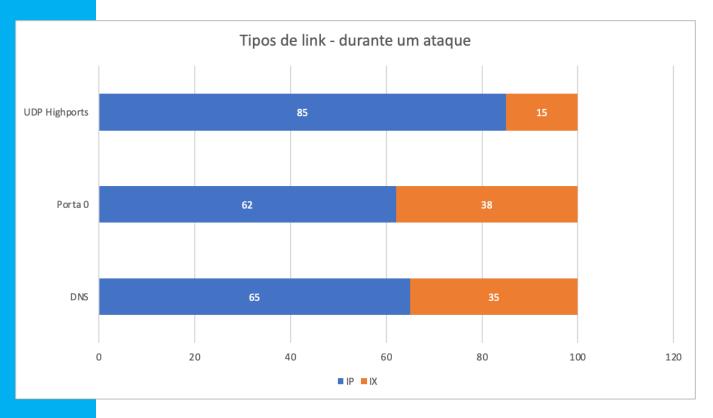
Os ataques do mesmo tipo/característica tem durado entre 40s e 120s

Resultado: Ataque volumétrico UDP, sendo o principal ofensor o tráfego DNS e de "porta 0", destinado a todas as sub-redes do ASN, com duração de até 2 minutos,

Ataque 01 - De quais Países?




 Durante a operação normal, mais de 90% do tráfego vindo de ASNs BR/USA


Ataque 01 - De quais Países?

Resultado: Ataque volumétrico UDP, sendo o principal ofensor o tráfego DNS e de "porta 0", destinado a todas as sub-redes do ASN, com duração de até 2 minutos, com IPs de origem em todos os continentes, mas principalmente da região APNIC,

Ataque 01 - Por quais links?

Até 38% do ataque entrando via IX.br

Resultado: Ataque volumétrico UDP, sendo o principal ofensor o tráfego DNS e de "porta 0", destinado a todas as sub-redes do ASN, com duração de até 2 minutos, com IPs de origem em todos os continentes, mas principalmente da região APNIC, com cerca de 30% desse tráfego chegando através do IX São Paulo.

Ataque 01 - Abrindo DNS e IX.br

Tráfego DNS, agregado por sub-rede /24 de origem, na interface do IX-SP

Top 10 subnets origem IX-SP durante operacao normal - DNS			
Subnet	Anunciada ATM via IX.br?	Quem	
8.8.8.0	Sim	Google	
8.8.4.0	Sim	Google	
212.102.32.0	Sim	CDN77	
1.1.1.0	Não	CloudFlare	
216.239.34.0	Sim	Google	
216.239.32.0	Sim	Google	
205.251.198.0	Não	Amazon	
205.251.199.0	Não	Amazon	
216.239.36.0	Sim	Google	
108.59.161.0	Sim	Oracle	

Top 10 subnets origem IX-SP durante ataque - DNS			
Anunciada ATM via			
Subnet	IX.br?	Quem	
8.8.8.0	Sim	Google	
		ATHOY CYBER NET	
103.102.247.0	Sim (via HE)	(APNIC)	
103.126.51.0	Sim (via HE)	City Net (APNIC)	
		Mohammad Mahabub	
103.97.206.0	Não	(APNIC)	
103.186.52.0	Não	Wave Net (APNIC)	
103.140.25.0	Sim (via HE)	Ali Akber (APNIC)	
103.140.24.0	Sim (via HE)	Ali Akber (APNIC)	
103.153.48.0	Sim (via HE)	MAYA SOFT (APNIC)	
103.76.155.0	Sim (via HE)	Kurigram ISP (APNIC)	
103.6.250.0	Não	Breeze Online (APNIC)	

Resultado: Ataque volumétrico UDP, sendo o principal ofensor o tráfego DNS e de "porta 0", destinado a todas as subredes do ASN, com duração de até 2 minutos, com IPs de origem em todos os continentes, mas principalmente da região APNIC, com cerca de 30% desse tráfego chegando através do IX São Paulo, através de peers "internacionais" (ou spoofing).

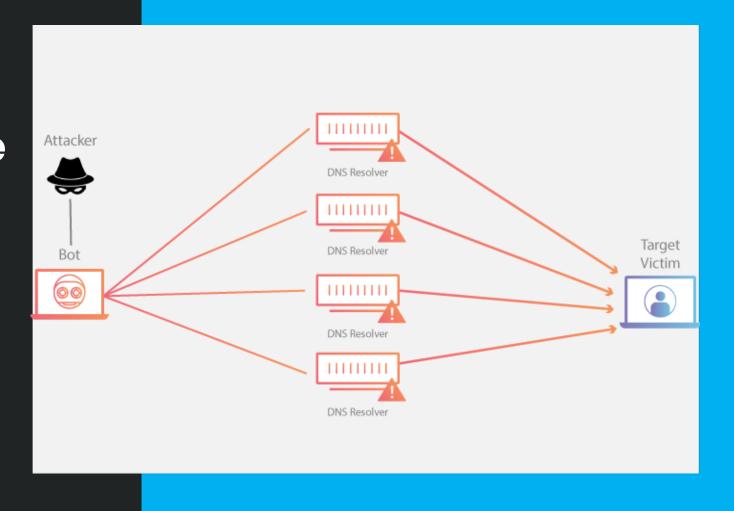
Ataque 01 - E a porta 0?

- A porta 0 sempre esteve em evidência em todos os ataques que exploramos
- Ao analisar somente com netflow, perdemos alguns dados do tráfego, como por exemplo os mac-address envolvidos, se ele faz parte de um outro pacote fragmentado, etc
- Partimos então para uma captura de pacotes, e descobrimos que a porta 0 tão reportada nas análises eram na verdade fragmentos de uma resposta DNS grande

Ataque 01 - Porta 0, agora fragmentos

```
Destination
    1 2023-11-09 13:35:2... 36.26.133.17
                                                  238.200
                                                                      112 Destination unreachable (Port unreachable)
                                                                      495 Fragmented IP protocol (proto=UDP 17, off=1456, ID=0727)
    2 2023-11-09 13:35:2... 109.196.118.26
                                                  239.200
    3 2023-11-09 13:35:2... 80.93.254.202
                                                  238.200
                                                                     1002 Fragmented IP protocol (proto=UDP 17, off=2960, ID=da1e)
                                                                     622 Fragmented IP protocol (proto=UDP 17, off=1456, ID=0937)
    4 2023-11-09 13:35:2... 91.93.153.93
                                                  239.200
    5 2023-11-09 13:35:2... 103.145.176.76
                                                  238.200
                                                                     598 Fragmented IP protocol (proto=UDP 17, off=1480, ID=ccab)
                                                                      583 Fragmented IP protocol (proto=UDP 17, off=1456, ID=e3da) [Reassembled in #7]
                                                  239,200
    6 2023-11-09 13:35:2... 170.245.14.41
                                                                    1490 Standard query response 0x53f2 TXT atlassian.com TXT TXT TXT TXT TXT TXT TXT...
   7 2023-11-09 13:35:2... 170.245.14.41
                                                  239,200
    8 2023-11-09 13:35:2... 94.231.199.26
                                                  238,200
                                                               IP... 1002 Fragmented IP protocol (proto=UDP 17. off=2960, ID=9d57)
 Frame 6: 583 bytes on wire (4664 bits), 583 bytes captured (4664 bits)
 Ethernet II, Src: HuaweiTe_7a:f0:e3 (1c:43:63:7a:f0:e3), Dst: VMware_df:2b:2e (00:0c:29:df:2b:2e)
Internet Protocol Version 4, Src: 170.245.14.41, Dst:
                                                                   .200
   0100 \dots = Version: 4
   \dots 0101 = Header Length: 20 bytes (5)
  Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
   Total Length: 569
   Identification: 0xe3da (58330)
   000. .... = Flags: 0x0
   ...0 0000 1011 0110 = Fragment Offset: 1456
   Time to Live: 53
   Protocol: UDP (17)
   Header Checksum: 0x38e2 [validation disabled]
   [Header checksum status: Unverified]
   Source Address: 170,245,14,41
   Destination Address:
                                   200
   [Reassembled IPv4 in frame: 7]
 Data (549 bytes)
```

Ataque 01 - Amplificação DNS


- Com a descoberta através da captura, podemos tipificar o ataque como de Negação de Serviço de Reflexão Distribuída (DRDoS) usando DNS
 - Amplificando respostas DNS grandes => tráfego porta 53

 - Fragmentando parte da resposta => tráfego porta 0
 Gerando uma série de ICMP Port Unreachable => tráfego ICMP
- Utilizaram neste ataque o dominio atlassian.com, buscando o registro TXT (2084 bytes)

Resultado: Ataque volumétrico UDP de amplificação DNS, destinado a todas as sub-redes do ASN, com duração de até 2 minutos, com IPs de origem em todos os continentes, mas principalmente da região APNIC, com cerca de 30% desse tráfego chegando através do IX São Paulo, através de peers "internacionais" (ou spoofing), causando o aumento no número de respostas DNS, fragmentos e o recebimento de ICMP port-unreachable.

Para saber mais sobre este ataque

SAIBA MAIS

Para saber mais sobre este ataque

SAIBA MAIS

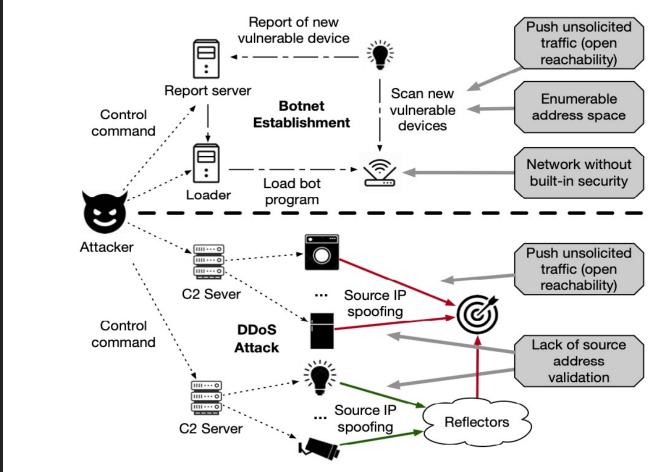
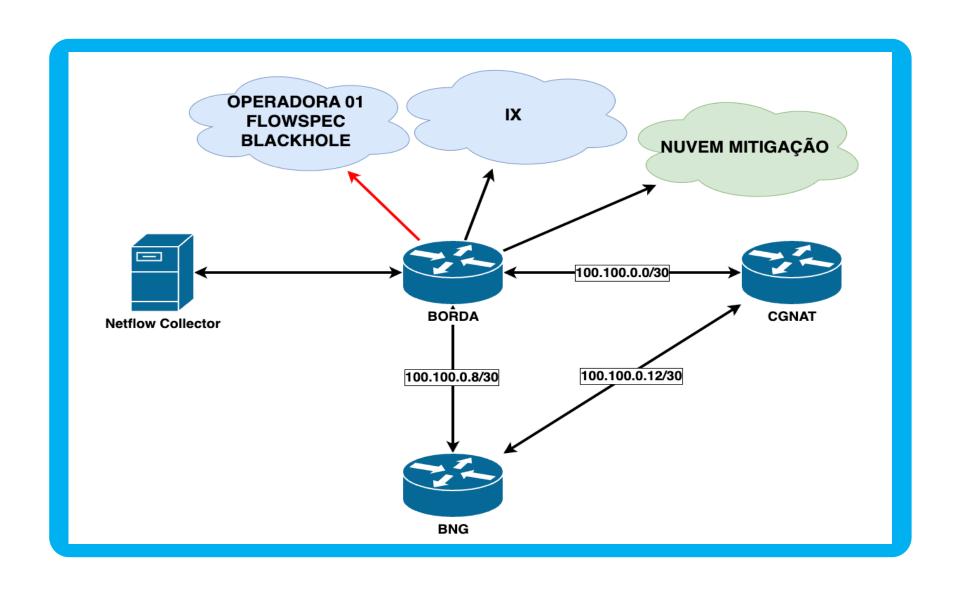


Fig. 2. IP design makes DDoS botnet establishment and attack easy

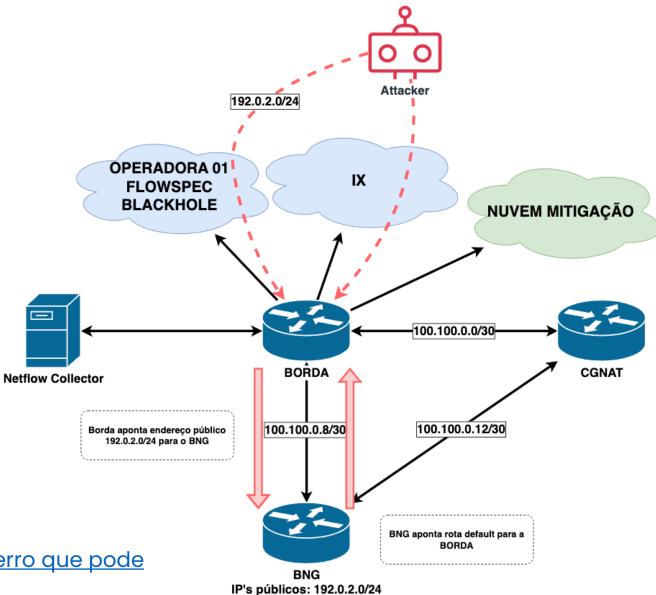
Resumo e pendencias

- Este mesmo padrão de ataque apareceu em centenas de análises que fizemos
- Obviamente que alguns pontos oscilavam de rede para rede
 - Ex: países, continentes, o ratio entre IP:IX
- Porém a grande maioria analisada utilizou a amplificação DNS como técnica
 - Isto quer dizer que todos s\u00e3o assim? DEFINITIVAMENTE N\u00e1O.
- A fazer.
 - Encontrar os participantes que encaminham estes ataques no IX.br (talvez via sflow)
 - Avançar na análise e consolidação de mais dados de outros tipos de ataque


E AGORA, COMO SE PROTEGER?

E também como não ser o causador de problemas

- Não se prepare durante o ataque. Esteja preparado!
 - Tenha sessão BGP com RTBH (blackhole) configurada;
 - Tenha sessão BGP flowspec com operadora configurada;
 - Tenha as communities BGP das operadoras em mãos;
 - Contrate operadoras que tenham suporte a blackhole e flowspec;
 - Contrate links de mitigação;
 - Tenha uma ferramenta de deteção de ataques alinhada com seu perfil de tráfego sem ataques;
 - Evite uso desnecessário de IPv4 público;
 - Evite uso de Softrouters nos principais serviços (BGP, CGNAT, BNG);
 - Implemente IPv6;
 - Implemente servidores DNS Recursivos Anycast escutando somente em IPs privados;
 - Remova loops estáticos de sua rede;

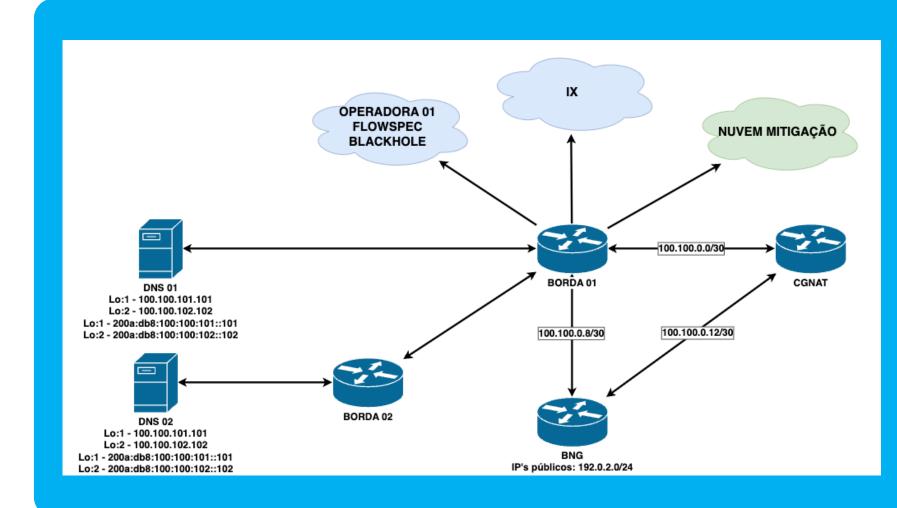

Sessão BGP com RTBH/Flowspec

Loops Estáticos

Entendendo o loop estático:

- Atacante envia ataque para a rede 192.0.2.0/24
- Tráfego chega até a BORDA;
- BORDA encaminha para o BNG;
- BNG não possui a rota instalada e devolve o tráfego para a BORDA;
- Esse tráfego fica indo e voltando entre BORDA e BNG até estourar o TTL.

<u>Artigo BPF - Marcelo Gondim - Static Loop - Um erro que pode</u> <u>matar seu ISP/ITP</u>


Loops Estáticos

Validar loops estáticos no site <u>Radar by Qrator</u>

DNS Recursivo Anycast

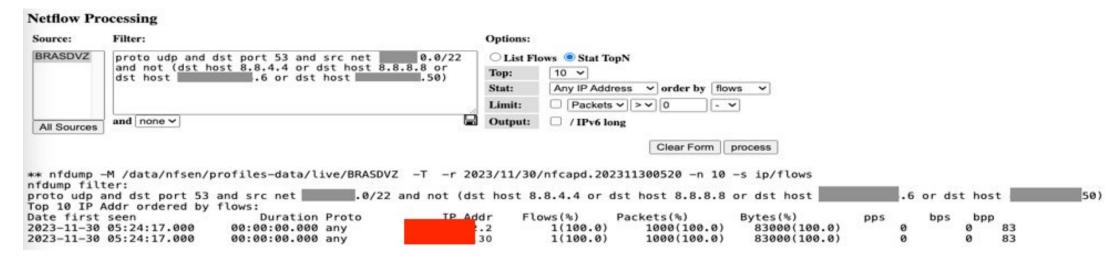
- DNS escuta somente em IP's Privados;
- Mesmo IP responde em vários servidores(anycast);
- Servidores devem permitir somente rede do seu ISP;
- NUNCA deixar servidor DNS aberto para o mundo

Implemente IPv6

Implemente IPv6 em massa

- 95% dos ataques são em IPv4;
- Quando estiver sob ataque, IPv6 vai fazer grande diferença;
- 45% do tráfego do Brasil está em IPv6 Adoção IPv6 Estatísticas Google

Não seja o cara mau da história

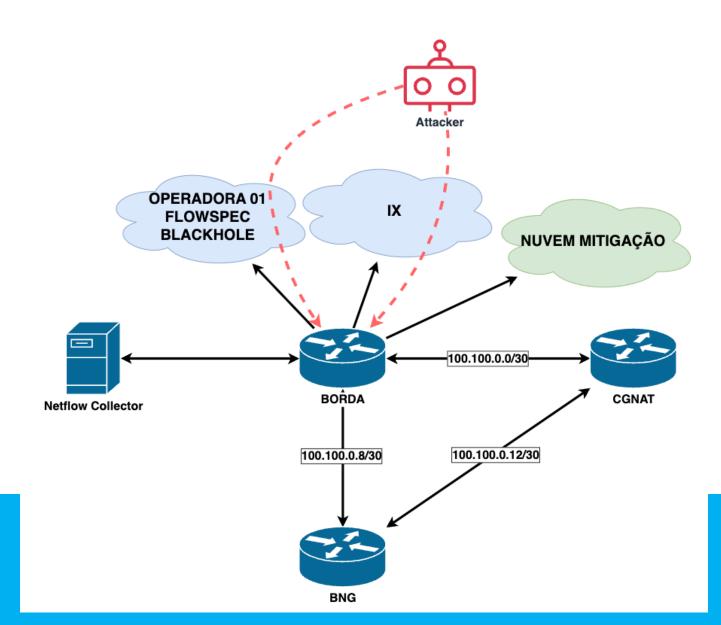

- Mantenha sua rede segura, faça scans regulares para encontrar falhas;
- Feche portas de acesso à CPE's de clientes;
- Não permita a comunicação entre clientes nas portas de gerência;
- Permita que seu servidor DNS recursivo sirva somente à sua rede. JAMAIS deixe servidores DNS recursivo aberto para o mundo;
- Garanta que seus equipamentos não estejam com portas sujeitas a amplificação sem controle de acesso (SNMP, NTP, DNS, Portmap, etc)
- Monitore sua rede com NetFlow;
- Mantenha seus registros whois/IRR/peeringDB atualizados;
- Ingresse no projeto MANRS;
- Responda ao CERT.br;
- Implemente a BCP38 (Anti-Spoofing);
- Identifique BOTNETS na sua rede e evite que esse tipo de tráfego malicioso saia da sua rede;
- Bloqueie portas comumente utilizadas para ataques: https://wiki.brasilpeeringforum.org/w/Portas_de_Amplifica%C3%A7%C 3%A3o_DDoS_e_Botnets

Identifique CPE's comprometidas na sua rede

Exemplo de captura via netflow.

Dica: usar NFSEN para capturar flows do BNG. Tutorial instalação NFSEN - <u>Remontti - Guia Passo a Passo - Instalação NFDUMP, NFsen</u>

\$ nfdump -R /var/log/flows/2017/12/06 'proto udp and dst port 53 and src net xx.xx.xx.xx/nn and not (dst host 8.8.4.4 or dst host 8.8.8.8 or dst host 1.1.1.1 or dst host 1.0.0.1 or dst host <SEU RECURSIVO>)'


Fonte: https://www.cert.br/docs/palestras/certbr-semanacap2021.pdf

Durante o ataque

- Monitore a rede com ferramentas SNMP e NetFlow;
- Se o ataque estiver concentrado em poucos IP's, envie-os para blackhole;
- Se possível, use bgp flowspec com as operadoras;
- Se necessário, desvie todo tráfego para uma operadora de mitigação e:
 - Remova anúncios específicos do ATM dos IXs;
 - Envie apenas para peers "seguros" nos IXs (community 65001:peeras) Communities IX;
 - Evite peers internacionais nos IXs;
 - Remova anúncios de outras operadoras que não fornecem mitigação;
 - Faça rate-limit para servidores DNS não seguros/conhecidos;

Mitigação

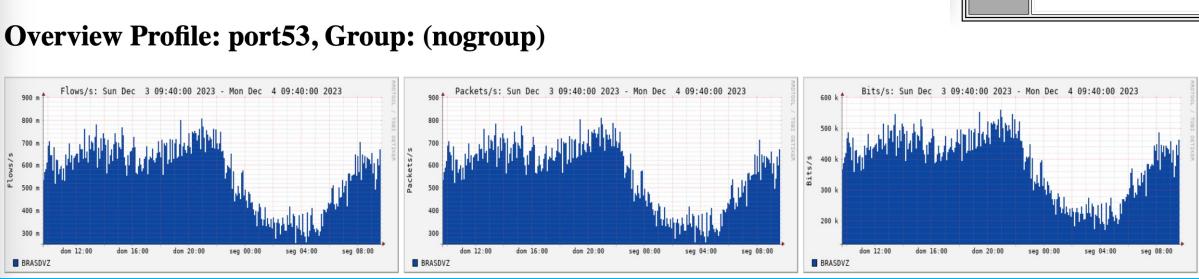
- Netflow collector detecta o ataque, gera as regras (blackhole, flowspec...) e envia para a BORDA que irá enviar as rotas atacadas para a OPERADORA ou para NUVEM DE MITIGAÇÃO;
- É possível mitigar dentro de casa, porém você precisa ter banda sobrando;

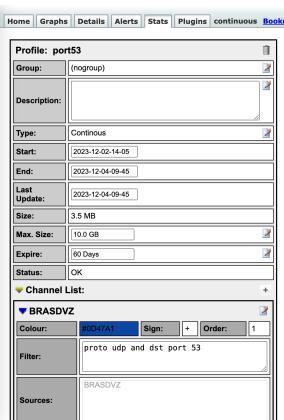
Mitigação

Mitigação com bgp flowspec em Huawei;

```
<DVZ-DC-BGP-01-NE8K>display bgp flow routing-table 532481
 BGP local router ID : 10.70.255.1
 Local AS number:
 ReIndex : 532481
 Dissemination Rules :
                           .11/32
   Destination IP :
   ICMP Type : eq 0 or eq 8
 BGP flow-ipv4 routing table entry information of 532481:
 Match action :
   apply deny
 From: 10.70.0.68 (10.70.0.68)
```

Monitoramento


- Entenda sua rede em detalhes!
- Monitore a rede com SNMP
- Monitore a rede com Netflow
- Monitore o perfil de tráfego de DNS
 - Quanto de tráfego de uso normal?
 - Quantos pacotes de uso normal?
 - Ajuste thresholds de DNS na ferramenta de detecção DDoS;
- Monitore o perfil de tráfego de porta 0
 - Quanto de tráfego de uso normal?
 - Quantos pacotes de uso normal?
 - Ajuste thresholds de Porta 0 na ferramenta de detecção DDoS;


Monitoramento

Profile para monitoramento da porta 53 no NFSEN

Exemplo monitoramento perfil de tráfego porta 53 utilizando NFSEN

Sugestões para leitura

- Artigo Made4it O que são ataques DDoS?
- Artigo Made4it Ataques DDoS, como provedores devem se proteger?
- Artigo CERT.br Recomendações para Melhorar o Cenário de Ataques Distribuídos de Negação de Serviço (DDoS)
- CERT.br Segurança para Provedores
- Artigo BPF Marcelo Gondim Recomendações sobre Mitigação DDoS
- Artigo BPF Marcelo Gondim Portas de Amplificação DDoS e Botnets
- Artigo BPF Marcelo Gondim Static Loop um erro que pode matar seu ISP/ITP
- Artigo BPF Marcelo Gondim DNS Recursivo Anycast Hyperlocal
- Artigo BPF Marcelo Gondim MANRS
- Site oficial MANRS Ações.
- BCP38 Anti Spoofing NIC.br

Dúvidas?

Contatos

Rafael Ganascim
www.made4it.com.br
ganascim.rafael@made4it.com.br
www.linkedin.com/in/rganascim

Gelso Baltazar

www.made4it.com.br

baltazar.gelso@made4it.com.br

www.linkedin.com/in/gelsobaltazar