

FINISAR

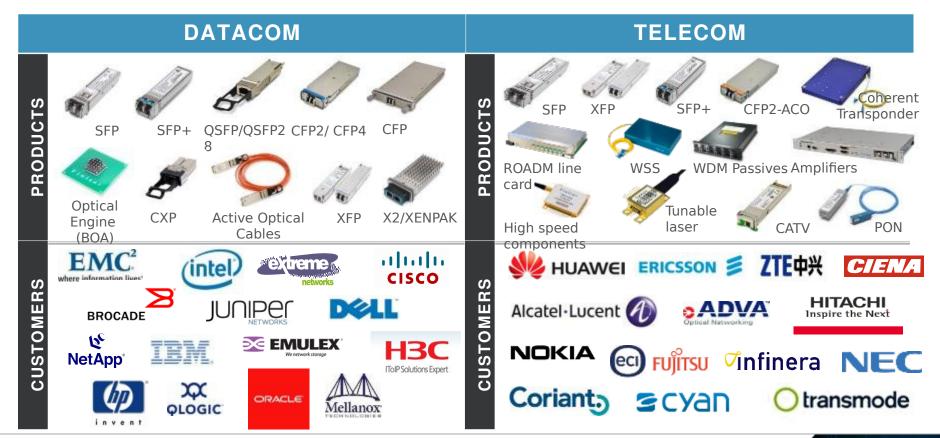
Latest Trends in High-Speed Optics

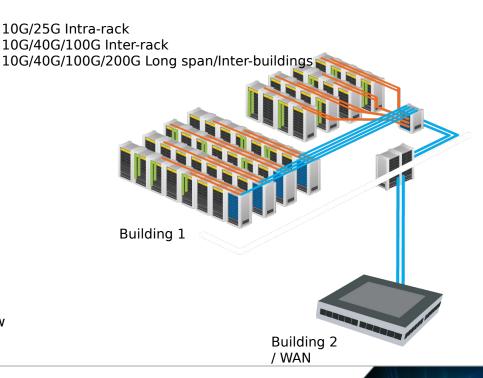
IX F[°]órum 11 São Paulo, December 2017

Greg Hart

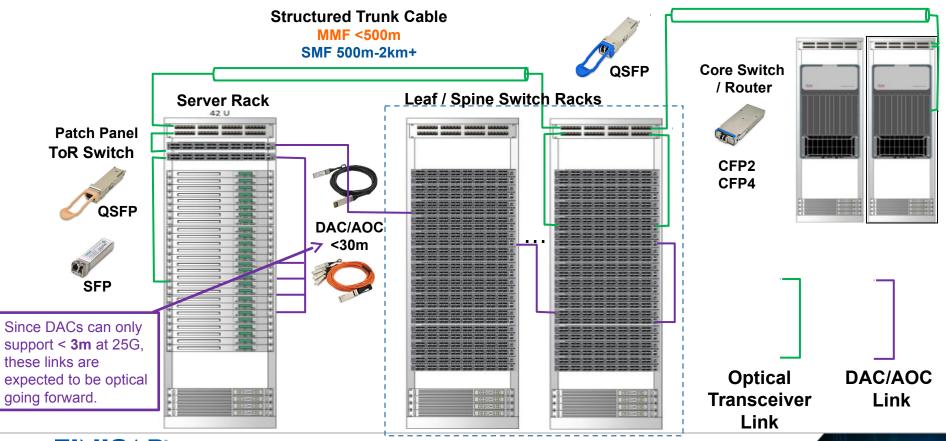
Finisar Corporation

World's Largest Supplier of Fiber Optic Components and Subsystems


- Optics industry leader with \$1.4B+ in annual revenue
- Founded in 1988
- IPO in 1999 (NASDAQ: FNSR)
- 13,000+ employees
- ~25% market share
- Best-in-class broad product line
- Vertically integrated with low cost manufacturing
- Significant focus on R&D and capacity expansion
- Experienced management team
- 1300+ Issued U.S. patents


Broad Product Portfolio and Customer Base

Data Center Connections are Transitioning


 Due to the significant increase in bandwidth demand, Data Center connections are moving from 1G/10G/40G, to 25G/100G/200G

- Within the Data Center Rack
 - 10GE still being deployed
 - 25GE starting to be deployed now
 - 50GE (or 100GE) to the server will follow
- Between Data Center Racks
 - 10GE and 40GE still being deployed
 - 100GE starting to be deployed now
 - What follows? 200GE or 400GE?
- Long Spans/DCI & WAN
 - 10G DWDM still being deployed
 - 100G/200G Coherent starting to be deployed now
 - What follows? 400G, 800G, or 1.6T?

Rack Connections in Hyperscale Data Centers

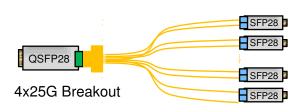
FINISAR © Finisar Corporation

5

Market moves to cost-Effective 25G and 100G Optical Modules

25GE Optical Transceivers

- Used for 25GE server ports and also on some Ethernet switch ports
- SFP28 form factor is standardized by SFF-8402 (SFF Committee)
- It has a 1-lane, retimed 25G I/O electrical interface
- Supports up to 1.5W power dissipation
- SR (100m, 300m) and LR (10km)


100GE Optical Transceivers

- QSFP28 is the 100GE module form factor of choice for Ethernet switches
- QSFP28 form factor is standardized by SFF-8665 (SFF Committee)
- It has a 4-lane, retimed 25G I/O electrical interface (CAUI-4)
- Supports up to 3.5W power dissipation
- SR4 (100m, 300m), SWDM4 (100m+), CWDM4 (2km) and LR4 (10km)

Active Optical Cables in QSFP28 and SFP28

 Cost-effective integrated cabling solutions for in-rack and rack-rack connections

100G Optical Standards and MSA Proliferation

- MANY optical interface choices in the market.
- Proliferation is impacting interoperability, multi-sourcing, and cost reductions through consolidated volume ramp – causing confusion and slowing down buying decisions.
- Choose broadly supported, standards or MSA-based optics (e.g., 100G CWDM4).
- Engage with broad-based optics suppliers to help navigate the available choices – remove technology bias.

Standards alphabet soup!

SR4, eSR4, SR10, 4xSR, 10xSR, 12xSR, LR4, LR4-Lite, eLR4, PSM4, 4xEDR, Omni-Path, 4xPCle4, ER4, ER4f, FC-PI-6 128G FC, 4x32G FC SMF, 4x32G FC MMF, OTU4, CWDM4, eCWDM4, SWDM4, eSWDM4

100-128 Gb/s

Typical 100GE Deployments in the Data Center

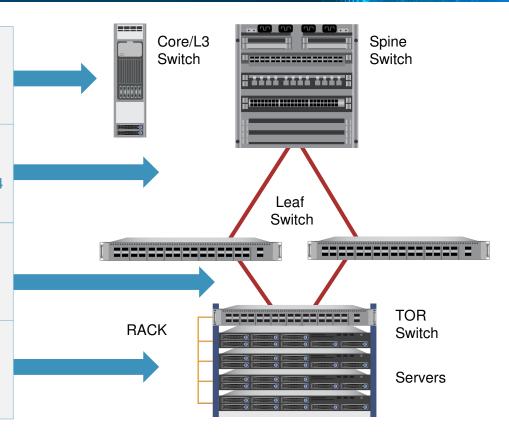
Core Switch/Router to Spine Switch

Deployed mostly 40GE LR4 **Start to deploy 100GE CWDM4/LR4**Roadmap is 200GE/400GE FR/LR next

Spine Switch to Leaf Switch links

Deployed mostly 40GE SR4/LR4 **Start to deploy 100GE CWDM4/eSR4/SWDM4/PSM4**Roadmap is 200GE/400GE FR4/DR4/SR4 next

Leaf Switch to TOR Switch links


Deployed mostly 40GE SR4 **Start to deploy 100GE SR4/SWDM4/AOC**Roadmap is 200GE/400GE SR4/AOC next

TOR Switch to Server links

Deployed mostly 10GE SR/DAC

Start to deploy 25GE SR/AOC

Roadmap is 50GE SR/AOC next (or 100GE)

Types of 100G QSFP28 Modules in the Market(*)

	PARALLEL (MPO)	DUPLEX (LC)	
MUL TIM ODE	SR4 & 4x25G-SR 70/100m SR4 w/Low-Latency 30/40m eSR4 300/400m	Support for existing 10G fiber infrastructure?	
SIN GLE MO DE	PSM4 500m	LR4 / eCWDM4 (4WDM-10) 10km CWDM4 2km Support for 500m duplex? eLR4 (4WDM-20) 20km ER4f (4WDM-40) 40km	

Multimode distances refer to OM3/OM4; Single mode distances refer to SMF.

BLACK = Standardized IEEE

interfaceSA or Proprietary interfaces

(*) Announced to be either in production or under development by at least one optical supplier.

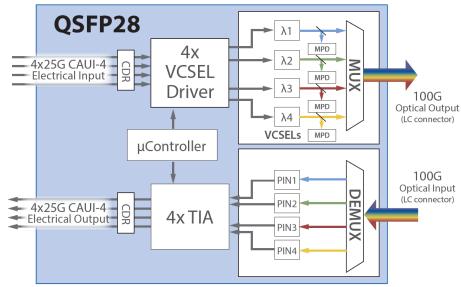
Responding to 100G Market Needs: CWDM4-OCP

 Large data center users like Facebook want a cost-effective single mode 100G QSFP28 module that is best adapted to their specific, well-controlled infrastructure conditions.

- Using a 100G CWDM4 'Lite' interface over duplex single mode fiber infrastructure together with a more limited reach of 500m and a narrower case temperature range of 15-55°C provides an optimized solution for this need.
- Facebook has submitted the CWDM4-OCP specification as a contribution to OCP.

http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Facebook - CWDM4-OCP

Why Duplex Multimode Fiber Matters


- For Brownfield Applications:
 - Most data centers today are still architected around 10G Ethernet
 - Primarily focused on using 10GBASE-SR over duplex MMF (LC connector)
- Data centers are migrating switch-to-switch links from 10G to 40G/100G, but want to maintain their existing fiber infrastructure.
 - SR4 interface requires using MPO connectors on the equipment side (not LC).
 - Not present in legacy fiber plant.
 - LR4 and CWDM4 interfaces require single mode fiber.
 - Not present in legacy fiber plant.

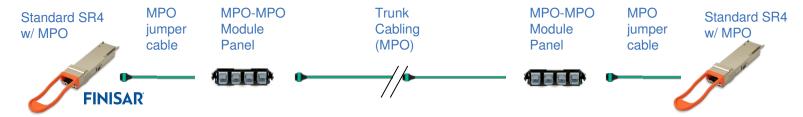
Many data centers want to upgrade from 10G to 40G and 100G without changing their duplex MMF infrastructure

Responding to Market Needs: SWDM4

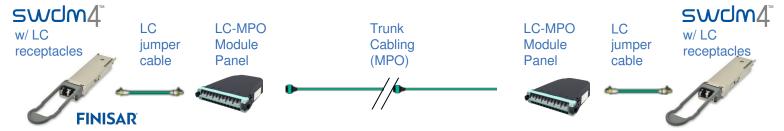
- Shortwave WDM (SWDM) technology uses multiple wavelengths in the 850nm region, optically multiplexed and demultiplexed inside the transceiver.
- SWDM4 enables the transmission of 40G (4x10G) and 100G (4x25G) over existing duplex multimode fiber with LC connectors.
- 40G and 100G QSFP SWDM4 modules are already available and have been publicly demonstrated.

12

Why Duplex Multimode Fiber Matters


For Greenfield Applications:

- Many new data centers require very high bandwidth density and longer reaches.
- Using SWDM4 requires 2 fibers per full-duplex link instead of 8. This significantly increases the bandwidth density per OM3/OM4 fiber and decreases the cost of new trunks/structured cabling infrastructure, while still using cost-effective multimode transceivers.
- For larger data centers, new OM5 multimode fiber can extend the reach of SWDM4 optics, since it allows wavelengths up to 953nm to propagate further.
- OM5 MMF also future-proofs the fiber infrastructure for possible future 200G, 400G and 800G interfaces.


For new data centers using 40G/100G, SWDM is a perfect solution to decrease infrastructure cost, and/or to increase link performance.

Using 100G SWDM QSFP28 Transceivers

Structured 100G Cabling with SR4 modules

Structured 100G Cabling with SWDM4 modules

Savings by using SWDM4:

- Reuse existing 10G MMF cabling infrastructure
- Use 2 multimode fibers instead of 8 fibers per 100G Ethernet link

SWDM <mark>Alliance</mark>

- Industry group to promote SWDM technology for duplex multimode fiber in data centers.
- Finisar is a founding member of the SWDM Alliance and SWDM MSA.
- More information at WWW.SWdm.org

Founding Members

40G and 100G SWDM4 QSFP Transceivers

- Supports both legacy and wideband duplex multimode fiber.
- Duplex LC connectors.
- 4x10G or 4x25G VCSEL transmitters.
- Fully electrically and mechanically compliant to QSFP host requirements.
- Longer reach and easier to deploy than proprietary "BiDi" solutions.

Data Rate	Module Type	OM3 Reach	OM4 Reach	OM5 Reach
40G	QSFP+ SWDM4	240m	350m	440m
100G	QSFP28 SWDM4	75m	100m	150m
100G	QSFP28 eSWDM4(*)	200m	300m	400m

(*) under development

swdm4

Types of 100G QSFP28 Modules in the Market(*)

	PARALLEL (MPO)	DUPLEX (LC)
MUL TIM ODE	SR4 & 4x25G-SR 70/100m SR4 w/Low-Latency 30/40m eSR4 300/400m	SWDM4 75/100m 150m on OM5 eSWDM4 200/300m 400m on OM5
SIN GLE MO DE	PSM4 500m	LR4 / eCWDM4 (4WDM-10) 10km CWDM4 [Lite] Support for 2km [500m] 80km+? eLR4 (4WDM-20) 20km ER4f (4WDM-40) 40km

Multimode distances refer to OM3/OM4; Single mode distances refer to SMF.

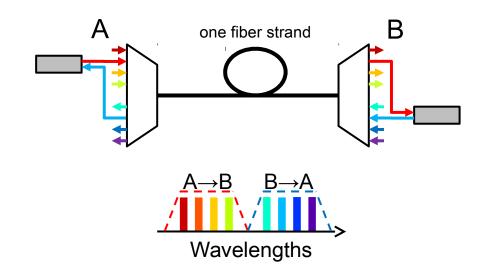
BLACK = Standardized IEEE

interfaceSA and Proprietary interfaces

(*) Announced to be either in production or under development by at least one optical supplier.

Coherent Transmission for Transport Applications

- 100G/200G links require a transponder box to convert to coherent optical transmission in order to support 80~100km and beyond.
- Several system OEMs provide a 1RU "pizza box" for DCI applications, which use pluggable Coherent CFP2-ACO optical modules from suppliers like Finisar.



 Accton/Edgecore has recently contributed to TIP the design for their open-source "Cassini" packet transponder box for DCI and backhaul applications, featuring pluggable coherent ports.

open-source design

Bi-Directional Coherent Transmission

- Some carriers lease dark fiber by individual fiber strand instead of per fiber pair.
- Bi-directional transmission over a single fiber strand allows significant operational cost savings.
- Bi-directional coherent transmission requires separate wavelengths for each direction.
- This can only be achieved if the coherent module has separate lasers for Tx and Rx, a unique feature supported by the Finisar CFP2-ACO.

We recommend using transport systems with pluggable Coherent CFP2-ACO optics instead of fixed ports.

Mainstream 1RU Ethernet Switch Roadmap

FIRST AVAILABLE	ELECTRICAL I/O [Gb/LANE]	SWITCHING BANDWIDTH	TOR/LEAF DATA CENTER SWITCH CONFIGURATION	
~2010	10G	1.28T	32xQSFP+ (40G)	
~2015	25G	3.2T	32xQSFP28 (100G)	3.2Tb/s switches based on 100G QSFP28 modules starting to be deployed in data centers today.
~2017	25G	6.4T		
~2018	50G	0.41	32 ports of 200G	Given the multiple switching ICs expected to be available, the market is likely to be fragmented
~2020	50G	12.8T	32 ports of 400G	in the future.

Beyond the 3.2Tb/s Switch

- Large growth in bandwidth demand is pushing the industry to work on technologies and standards to support future 6.4T and 12.8T switches.
- 50G, 200G and 400GE Standards are being defined by IEEE.
- Modulation is moving from NRZ to PAM4 for both electrical and optical interfaces.

- Optics suppliers are investing large R&D \$\$ on supporting these new rates.
 - New transceiver module form factors (CFP8, QSFP56, QSFP-DD, OSFP, SFP56).
 - Advanced VCSELs, InP DFB lasers and Si Photonics technologies.
 - ICs and manufacturing test platforms that support PAM4 modulation.

50G, 200G and Next-Gen 100G Ethernet Standardization

200GE interfaces being standardized in IEEE 802.3bs

INTERFACE	LINK DISTANCE	MEDIA TYPE	TECHNOLOGY
200GBASE-SR4	100 m	8f Parallel MMF (MPO)	4x50G PAM4 850nm
200GBASE-DR4	500 m	8f Parallel SMF (MPO)	4x50G PAM4 1300nm window
200GBASE-FR4	2 km	Duplex SMF (LC)	4x50G PAM4 CWDM
200GBASE-LR4	10 km	Duplex SMF (LC)	4x50G PAM4 LAN-WDM

50GE interfaces being standardized in IEEE 802.3cd

INTERFACE	LINK DISTANCE	MEDIA TYPE	TECHNOLOGY
50GBASE-SR	100 m	Duplex MMF (LC)	50G PAM4 850nm
50GBASE-FR	2 km	Duplex SMF (LC)	50G PAM4 1300nm window
50GBASE-LR	10 km	Duplex SMF (LC)	50G PAM4 1300nm window

Next-Generation 100GE interfaces being standardized in IEEE 802.3cd

INTERFACE	LINK DISTANCE	MEDIA TYPE	TECHNOLOGY
100GBASE-SR2	100 m	4f Parallel MMF (MPO)	2x50G PAM4 850nm
100GBASE-DR	500 m	Duplex SMF (LC)	100G PAM4 1310nm

400G Ethernet Standardization

400GE interfaces being standardized in IEEE 802.3bs

INTERFACE	LINK DISTANCE	MEDIA TYPE	TECHNOLOGY
400GBASE-SR16	100 m	32f Parallel MMF (MPO)	16x25G NRZ Parallel
400GBASE-DR4	500 m	8f Parallel SMF (MPO)	4x100G PAM4 Parallel
400GBASE-FR8	2 km	Duplex SMF (LC)	8x50G PAM4 LAN-WDM
400GBASE-LR8	10 km	Duplex SMF (LC)	8x50G PAM4 LAN-WDM

Future 4

400G-LR4

10 km

Duplex single mode fiber

400G-FR4

2 km

Duplex single mode fiber

400G-SWDM8

100 m

Duplex multimode fiber

ssed:

400GE CFP8 and QSFP-DD Optical Transceiver Modules

CFP8 is the *1st-generation* 400GE module form factor, to be used in routers and DWDM transport client interfaces.

Module dimensions are slightly smaller than CFP2

Supports either **CDAUI-16** (16x25G NRZ) or **CDAUI-8** (8x50G PAM4) electrical I/O

QSFP-DD (and similar) modules being developed as *2nd-generation*, for higher port-density.

Enables **12.8Tb/s** in 1RU via 32 x 400GE ports Supports **CDAUI-8** (8x50G PAM4) electrical I/O only Host is backwards compatible with QSFP28

Trends in High-Speed Optics

- 25G/100G is providing a very cost-effective upgrade from 10G/40G and will be the mainstay of Ethernet over the next 5 years.
- A very large number of 100G SR4, SWDM4 and CWDM4 ports will be deployed in the next 2-3 years.
- These multi-source interfaces are likely to be the volume/cost leaders in mainstream deployments over the next 5+ years.
- SWDM4 enables upgrading to 40G/100G using duplex multimode fiber.
- 100G 'Lite' variants can provide benefits in controlled environments.
- Coherent technology being used for DCI/backhaul applications at 100G/200G and beyond.
- The industry is already working on 200G and 400G for next-generation Data Centers.

FINISAR

Thank You / Q&A

Greg Hart – Vice President

greg.hart@finisar.com