
Improving Network Observability with
Telemetry using gNMIc and

Prometheus

Telemetry
● Telemetry Concept

○ Data collecting, processing, and displaying
○ Real-Time
○ Highly used in many environments

● Telemetry on Network (RFC 9232)
○ SLA Compliance
○ Network Optimization
○ Event-Tracking

SNMP x Telemetry

SNMP Telemetry

UDP gRPC, HTTP/2

Polling-based Streaming-based

Latency due poller time Close to real-time data
collection

Widely standardized, but less
modern.

Accepted by newer devices

Choosing a Stack
Data Visualization

Data Storage

Data Collector

Targets

Stack with gNMIc and Prometheus
● Data Collector (gNMIc)

○ gNMIc is a gNMI client developed as part of the OpenConfig project.
○ It uses HTTP/2 over RPC to manage and monitor network devices.

● Data Storage (Prometheus)
○ Prometheus is a monitoring and alerting system that collects and

stores metrics as time series data with timestamps.
○ It scrapes data from endpoints and saves samples as numerical

measurements, or metrics.
● Data Visualization (Grafana)

○ Visualization, monitoring, and analytics platform

Example of gNMIc Telemetry Stack

● Targets (Devices)
○ Cisco IOS XR, 7.3.2

● Colleting
○ gNMIc Single or Cluster

● TSDB
○ Prometheus

● Visualization
○ Grafana

https://devnetsandbox.cisco.com/
https://gnmic.openconfig.net/user_guide/gnmi_server/
https://prometheus.io/
https://grafana.com/

Device Configuration
● Configuring devices to respond gNMIc:

○ Allow protocol gRPC
○ Allow gRPC port in policy (if used)

● Example
○ Junos OS :

■ system extension-service request-response grpc
● define port, max-sessions, ssl

○ Cisco:
■ grpc

● port, ssl, max-sessions

Using gNMIc
● gNMIc Linux install:

○ bash -c "$(curl -sL https://get-gnmic.openconfig.net)"

● gNMIC with Containerlab
○ container-based networking labs.

● gNMIc with Docker / Docker-Compose
○ image: ghcr.io/openconfig/gnmic

https://get-gnmic.openconfig.net
https://containerlab.dev/#

Testing data collection - Capabilities

Building the Docker-Compose

 gnmic:
image: gnmic:latest
container_name: gnmic1
volumes:

 - ./gnmic.yaml:/app/gnmic.yaml
command: "subscribe --config /app/gnmic.yaml"
ports:

 - 9804:9804

 prometheus:
image: prom/prometheus:v2.47.0
container_name: prometheus
volumes:

 - ./prometheus/:/etc/prometheus/
 - prometheus-data:/prometheus

command:
 - '--config.file=/etc/prometheus/prometheus.yaml'
 - '--storage.tsdb.path=/prometheus'
 - '--web.console.libraries=/usr/share/prometheus/console_libraries'
 - '--web.console.templates=/usr/share/prometheus/consoles'
ports:

 - 9090:9090

 grafana:
container_name: grafana
image: grafana/grafana:latest
ports:

 - "3001:3000"

gNMIc - Configuration

Targets Subscription Output Processors

Define
devices

Access
information

Define “paths”

Specify
modes

Specify
outputs

Define output

Output
parameters

Define metrics
transformation

Allow data
enrichment

Actions

Execute an
action when a
Subscription

or Get
response

matches the
configuration

gNMIc - Configuration Example

targets:
 cisco-IOS-XR:
 address: sandbox-iosxr-1.cisco.com:57777

 username: ${USERNAME}
 password: ${PASSWORD}
 subscriptions:
 - interface-state

subscriptions:
 interface-state:

paths:
 - /interfaces/interface

mode: STREAM
stream-mode: on-change
outputs:

- prom-output

● Targets and Subscriptions
○ Targets specify the devices and access information.
○ Subscriptions specify the data collection mode, outputs, and paths.

Output example:

gNMIc - Configuration Example
● Outputs

○ gNMIc outputs allow the user to store the collected metrics.

outputs:
 prom-output:

type: prometheus_write
url: http://prometheus:9090/api/v1/write
debug: true
event-processors:

 - delete-data
 - convert-timestamp

processors:
 convert-timestamp:

event-override-ts:
 precision: ns

Collecting Data - Prometheus

gNMIc - Configuration Example
● Processors

○ gNMIc event processors allow us to transform an event message that
will be be written to output.

processors:
 delete-data:

event-delete:
 value-names:
 - ".*openconfig.*"
 delete-tags:

event-delete:
 tag-names:
 - "^subscription-name"
 - ".*status.*"

Formatted Output

Creating actions
● Actions

○ Enables the execution of an action when an event is triggered.

processors:
 trigger-alarm:

event-trigger:
 condition: '.values.port_state == "0"'
 min-occurrences: 1
 max-occurrences: 2
 window: 60s
 async: true
 actions:
 - alarm

actions:
 alarm:

type: http
method: POST
url:
headers:

 content-type: application/text
timeout: 5s
body: ' Teste'
debug: false

Conclusion
● Although the configuration is complex, there are a lot of benefits

for your network:
○ real-time monitoring, less CPU intensive, granularity
○ personalize for your necessities
○ reinforce SLAs

● Flow technologies can enhance data collection
○ Flow can help understand “who” whereas gNMI helps understand

“what” is impacting your network

OBRIGADO!

Danilo Rodrigues

